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a b s t r a c t

NiSi nanocrystals of high density and good uniformity were synthesized by vapor–solid–solid growth in a
gas source molecular beam epitaxy system using Si2H6 as Si precursor and Ni as catalyst. A metal–
oxide–semiconductor memory device with NiSi nanocrystal–Al2O3/SiO2 double-barrier structure was
fabricated. Large memory window and excellent retention at both room temperature and high tempera-
ture of 85 �C were demonstrated.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Nonvolatile memories with discrete charge storage nodes have
been investigated extensively during the past decade. Since it was
pioneered by Tiwari in 1995 [1], Si nanocrystal (NC) floating gate
memory has been nominated as a promising replacement of con-
ventional flash memory thanks to its immunity to defect-related
charge leakage and potential to exceed flash scaling limit. Both aca-
demia and industry have also invested tremendous efforts into
research of other NC memories, exploring new materials and novel
gate structures for future flash memory [2–9]. Metal silicide NCs,
with high density of states and robust thermal stability, have
attracted much attention since they were proposed as good candi-
dates to improve NC memory performance [10] and much work
has been done to explore this material for nonvolatile memory
application [11–18]. As an alternative way of improving memory
performance, NC core–shell structure with additional barrier layer
as floating gate has been developed and adopted by researchers.
For example, metal and semiconductor NC core with oxide shell
synthesized by various methods such as laser irradiation induced
native oxidation [19], micelle dipping [20], chemical vapor deposi-
tion and annealing [21] and pulsed laser deposition [22] were
reported.
ll rights reserved.

: +1 951 827 2425.
In this paper, we report a metal–oxide–semiconductor capacitor
memory device with an engineered floating gate similar to core–
shell structures. The floating-gate structure consists of a layer of
high-density vapor–solid–solid (VSS) induced NiSi NCs by gas
source molecular beam epitaxy (GSMBE) embedded in-between
two Al2O3 thin barriers deposited by atomic layer deposition
(ALD). Fig. 1a shows a schematic diagram of the device structure.
The Al2O3/NiSi NC/Al2O3 floating gate is sandwiched by a control
oxide layer and a tunnel oxide layer. Fig. 1b shows the flat energy
band diagram of the memory device. The Fermi-level of NiSi NC with
a work function of 4.7 eV [23] is aligned within the mid-gap of bulk
Si. The conduction band offset between NiSi and Al2O3 (electron
affinity 1.35 eV, Ref. [24]) is as high as 3.35 eV. The benefit of using
additional Al2O3 barrier layers is two folds. First, it is to minimize dif-
fusion of Ni metal atoms into SiO2 tunneling layer during high tem-
perature process to reduce the charge leakage paths for prolonged
retention. Second, it is to maintain programming efficiency and im-
prove retention performance. Energy band diagrams of program-
ming and retention states are illustrated in Fig. 1c. During
programming, gate bias is applied so that electrons can be pulled
into NCs by Fowler–Nordheim tunneling. Because of the high-K
property of Al2O3, electric field concentration effect [25] makes most
of the voltage drop on SiO2 layer. In addition, since the barrier height
of Al2O3 layer is lower than that of SiO2, electrons do not actually
have to go through the barrier of Al2O3 but only the thin SiO2 tunnel
barrier to reach the NC. Hence, it is believed that this structure has
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Fig. 1. (a) Schematic of device structure; (b) flat energy band diagram of NiSi NC–
Al2O3 floating-gate memory; and (c) energy band diagram at programming and
retention states.
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Fig. 2. (a) SEM image of high-density NiSi NCs; (b) XPS spectrum of NiSi NCs on
Al2O3/SiO2/Si substrate; (c) cross-sectional TEM image of NiSi NC–Al2O3 floating-
gate memory device; and (d) cross-sectional TEM image of the control sample.
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the ability to maintain the efficiency of programming operation
compared to the structure without Al2O3. On the other hand, in
retention state, electrons are kept in the deep quantum well formed
by Al2O3/NiSi NC/Al2O3 structure. In this case, electrons see a barrier
of both Al2O3 and SiO2 and the total barrier thickness is increased.
Therefore, robust retention characteristics are expected for this
Al2O3/NiSi NCs/Al2O3 floating-gate memory device combining
metallic silicide NCs with double-barrier structure.
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Fig. 3. C–V sweep of (a) NiSi NC–Al2O3 floating-gate memory device and (b) control
device under different scanning gate voltages.
2. Device fabrication

Device fabrication starts with a pre-cleaned p-type Si (1 0 0)
substrate. A thin thermal oxide of 3 nm was grown on the sub-
strate at 850 �C. This was followed by 2.5 nm Al2O3 deposition
using ALD. A very thin layer of Ni was coated on the sample by
room temperature electron-beam evaporation as catalyst and the
sample was immediately transferred into a custom-built GSMBE
system for subsequent silicide NC synthesis. Disilane (Si2H6) was
used as the Si precursor to perform VSS growth at 600 �C, which
is a temperature much lower than the eutectic temperature be-
tween Ni and Si of 964 �C [26]. Growth conditions (i.e. growth time,
gas source flux) were calibrated to achieve reliable high-density ul-
tra-uniform NCs growth over the whole sample surface. After NiSi
NCs formation, another thin Al2O3 layer of 4.5 nm was deposited
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on top by ALD to form the Al2O3/NiSi NC/Al2O3 structure. Finally,
25 nm SiO2 was deposited as control oxide in a low pressure chem-
ical vapor deposition (LPCVD) system and Al was evaporated onto
the front and back side of the sample as contacts for the memory
capacitors. Control device without NC embedded in Al2O3 and NC
device without Al2O3 were fabricated simultaneously for
comparison.
3. Results and discussion

Fig. 2a shows a scanning electron microscopy (SEM) image of
the as-grown NCs on Al2O3 surface. The average size of uniformly
distributed NCs over the whole sample surface is about 4.5 nm
and the density is around 1.5 � 1012 cm�2. X-ray photoelectron
spectroscopy (XPS) was utilized to determine the chemical nature
of the NCs. Fig. 2b shows the XPS result of Ni 2p3/2 for the sample
before top Al2O3 coverage. The binding energy peak found at
853.9 eV indicates that the nature of NC is NiSi [27]. Fig. 2c and
d shows the cross-sectional transmission electron microscopy
(TEM) images of the NC core–shell memory device and the control
device without NC, respectively, where the interfaces are edge-on
and the thickness of each layer in the devices could be measured
directly from the images. The TEM images indicate that the inter-
faces are flat, and layer thicknesses are consistent with the
designed ones, as mentioned above.

Fig. 3a and b shows high-frequency (1 MHz) capacitance–voltage
(C–V) sweep characteristics of NiSi NC–Al2O3 floating-gate memory
and its non-NC control device, respectively. With gate voltage
increasing from 24 V/-30 V to 34 V/-40 V, the memory window
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Fig. 4. (a) Transient characteristics of NiSi NC–Al2O3 floating-gate memory under
different gate programming /erasing voltages and (b) flat-band voltage shift and
number of electrons per dot as a function of gate bias.
increases from 1.4 V to 15 V, suggesting that the memory effect is
due to the NC storage rather than defect/interface state charging.
The large memory window also suggests high charge storage capa-
bility of the NiSi NCs. In comparison, with the same gate voltage
sweeping range, almost no memory window was observed in the
control device without NCs, which confirms that memory window
shown by the core–shell memory device is attributed to charge stor-
age in the NCs. The high voltage required for C–V sweeping here is
due to the thick control oxide layer deposited by LPCVD. With opti-
mized device geometry, it is expected that lower gate voltage oper-
ation and shorter programming/erasing time can be achieved.

Fig. 4a shows flat-band voltage shift (DVFB) as a function of pro-
gramming/erasing time under different gate voltages. Program-
ming was conducted by biasing the gate with a positive voltage
while a negative voltage was applied for erasing. Clear time depen-
dence of DVFB was observed in both programming and erasing case
for gate voltage ±21 V to ±24 V. The lower speed of erasing than
that of programming is due to the deep quantum well formed in
the Al2O3/NiSi NC/Al2O3 structure, which makes electron see high-
er and thicker barrier in erasing. It should also be noticed from the
curves that higher voltage results in larger DVFB, suggesting a volt-
age-dependent programming/erasing behavior of the memory de-
vice. Fig. 4b shows the DVFB and number of electrons per NC as a
function of writing voltage. The charge stored per unit area in a de-
vice is calculated from: Q = (eSiO2=dSiO2 )DVFB, where eSiO2 is the
dielectric constant of SiO2, dSiO2 is the equivalent control oxide
thickness of the MOS device, which is 27 nm in this work, and DVFB

is the VFB shift between fresh state and programmed state. The
charge number per NC is calculated from: # of electrons/dot = Q/
Dq, where D is the NC density, which is 1.5 � 1012 cm�2 here and
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Fig. 5. (a) Retention characteristics of NiSi NC–Al2O3 floating-gate memory at room
temperature and 85 �C and (b) retention characteristics of NiSi NC memory without
Al2O3 barrier layer.



100 101 102 103 104 105

-4.8

-4.6

-4.4

-4.2

-4.0

-3.8

-3.6
V FB

 (V
)

Cycles

Erased
 Programmed

Fig. 6. Endurance characteristics of NiSi NC–Al2O3 floating-gate memory up to
105 cycles.

26 J. Ren et al. / Solid-State Electronics 67 (2012) 23–26
q is the electron charge. More than 5 electrons can be injected into
each NC on average before saturation, indicating good charge hold-
ing capability of NiSi NCs similar to other metallic silicide NCs [16].

Fig. 5a shows retention characteristics of NiSi NC–Al2O3 float-
ing-gate memory at room temperature and 85 �C, respectively.
The device was programmed at 19 V/3 s and erased at �22 V/3 s
and DVFB as a function of waiting time is plotted. Up to 105 s, the
charge loss ratio is only 10% for room temperature testing and
24% for high temperature testing. When extrapolated to 10 years,
the curves show that there is still 80% and 60% charge maintained
in the device, respectively. In contrast, 10-year charge remaining
ratios between 60% and 80% were observed at room temperature
only in other core–shell or NC-only device structures [17–20], sug-
gesting that this NiSi NC/Al2O3/SiO2 double-barrier floating-gate
memory has the capability to achieve robust retention. Fig. 5b
shows room-temperature retention characteristics of control NiSi
NC memory without Al2O3 barriers. The memory window was
almost closed completely after 105 s, indicating that the charge
stored in NCs was lost at a very fast rate. As mentioned before,
the diffusion and segregation of Ni metal atoms into SiO2 tunneling
layer during high-temperature NiSi synthesis process accounts for
the fast leakage of charges and much worse retention properties.
With an additional Al2O3 barrier, this problem has been effectively
solved.

Fig. 6 shows endurance characteristics of the device. Program-
ming/Erasing voltage of ±20 V was used to test the cycling perfor-
mance. The small memory window opened is due to short pulses
used in contrast to the long writing/erasing time and high voltage
required by this device. It is evident that up to 105 cycles, the
device stressed by such high gate bias keeps the window with
almost no degradation, suggesting good endurance properties.

4. Conclusions

NiSi NCs of high density and good uniformity were synthesized
by VSS growth in a GSMBE system using Si2H6 as Si precursor,
based on which a nonvolatile memory with Al2O3/NiSi NC/
Al2O3structure as floating gate was fabricated and characterized.
The memory device exhibits large memory window, robust reten-
tion at both room temperature and high temperature of 85 �C, and
good endurance. Further device geometry optimization of using
thinner control oxide and varied Al2O3 thickness may be carried
out to achieve low voltage operation as well as good transient per-
formance. Memories with this structure can be a promising candi-
date for future flash memory application.
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