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Zinc oxide (ZnO) is a traditional II–VI semiconductor material.
Owing to its direct wide band gap and high exciton binding
energy, ZnO has been considered as one of the most promising
ultraviolet (UV) lasing materials. Its lasing performance has been
widely explored for two decades [1–4]. To realize high-quality
high-performance lasers, excellent optical cavities are needed.
Among various methods to synthesize ZnO microstructure or
nanostructure cavities [5,6], hydrothermal method is considered
to be an easy and inexpensive way [6]. However, optical proper-
ties of hydrothermal ZnO are often poor, which prevents the real-
ization of reliable high-performance ZnO lasers. As reported by
Qiu et al. [7], quality (Q) factor of hydrothermal ZnO microcavity
with diameters ranging from 150 to 1000 nm is 540 while the Q
factor is larger than 600 for chemical vapor deposition (CVD)
samples with similar dimensions. It is still challenging to effec-
tively improve structural properties of hydrothermal ZnO for
enhanced optical performance.

Graphene, which consists of a monolayer honeycomb lattice of
carbon atoms, has attracted a great deal of attention since its dis-
covery in 2004 due to its remarkable properties [8,9]. Recently,
many researchers have proved that graphene is an excellent tem-
plate for epitaxy of semiconductors with high crystal quality. For
examples, Chung et al. [10] obtained good-performance light emit-
ting diodes based on epitaxial GaN on graphene using ZnO nano-
walls as intermediate layer; Baek et al. [11] achieved epitaxial
GaN microdisks using patterned graphene nucleation layers on sil-
icon dioxide and demonstrated whispering gallery mode lasing
behaviors of these microdisks. More interestingly, the optical per-
formance of wide bandgap semiconductors such as GaN and ZnO
can be significantly enhanced when graphene is attached to these
semiconductors because graphene is a material with strong surface
plasmon (SP) response in the UV range [12,13]. Some representa-
tive research results have been published, for examples, Hwang
et al. [14] revealed a SP dispersion relation and demonstrated the
resonant excitation of graphene SP and its contribution to ZnO
photoluminescence (PL); Liu et al. [15] reported three-time
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enhanced PL of ZnO microwires coated with gold nanoparticles
and a graphene layer. All the reports above show that it is possible
to achieve high-performance lasers by forming high-quality ZnO/
graphene hybrid cavity through the combination of ZnO and
graphene.

Different from previous reports, Qin et al. [16] now proposed a
novel way to grow hydrothermal ZnO microrods directly and ver-
tically on graphene. Their results have been published as the story
on the front cover of Journal of Materials Chemistry C. In this paper,
a single-layer graphene was utilized as buffer layer to grow ZnO
microrods vertically. Fig. 1a shows the schematic of the ZnO/gra-
phene system, and the inset is a scanning electron microscope
(SEM) image of an individual ZnO microrod. Fig. 1b shows PL spec-
tra from an individual ZnO microrod on graphene at difference
excitation powers, and Fig. 1c shows energy dispersive X-ray
(EDX) mapping results of Zn, O and C elements, which verify the
structure. Due to the effect of graphene, ZnO microrod structures
are improved, leading to improved optical properties such as
increased exciton recombination rates. Single-mode lasing is real-
ized in an individual rod, as shown in Fig. 1b. The lasing perfor-
mance is better than other hydrothermal samples and the Q
factor is above 900. Similar single-mode lasing of graphene-cov-
ered ZnO sample was realized by Li et al. [17]. Besides the improve-
ment of the structural properties of hydrothermal ZnO microrods,
the lasing improvement is also ascribed to the coupling of gra-
phene SP and ZnO excitonic mode.

To conclude, what Qin et al. [16] have achieved in this effort is
the demonstration of a strategy for yielding single-mode lasing in
ZnO microrod structures of several micrometers. This work is an
important step towards electrically pumped ZnO single-mode UV
lasers on various substrates such as Si and plastics.
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Fig. 1. A ZnO/graphene single-mode laser. (a) Schematic of a vertical ZnO microlaser optically excited with a 325 nm fs laser. The inset shows an SEM image of individual ZnO
microrod. (b) Lasing spectra of individual ZnO microrod under different excitation power. (c) EDX mapping of ZnO on graphene.
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