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In-plane lattice thermal conductivity of a quantum-dot superlattice
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We have theoretically investigated the in-plane lattice thermal conductivity of a quantum-dot
superlattice. The calculations were carried out for a structure that consists of multiple layers of Si
with randomly distributed Ge quantum dots separated by wetting layers and spacers. Our model
takes into account scattering of acoustic phonons on spherical quantum dots, and corresponding
modification of the phonon dispersion relation. The finite acoustic mismatch between Si and Ge is
also taken into account. The obtained results are important for the most recently suggested
applications of SiGe quantum-dot superlattices for thermoelectric devices. ©2000 American
Institute of Physics.@S0021-8979~00!01214-7#
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I. INTRODUCTION

Continuous progress in fabrication techniques for arr
of semiconductor quantum dots resulted in signific
achievements both in understanding the physical process
quasi zero-dimensional structures and in their application1,2

Until recently, most of the applications envisioned for qua
tum dot arrays were in the area of optoelectronics.2–4 The
situation has changed with several most recent proposa
utilization of quantum-dot superlattices~QDSs! for thermo-
electrics applications.5–7 Randomly distributed Ge quantum
dots in planar layers of Si strongly scatter phonons, wh
they do not severely deteriorate electron transport. Quan
confinement of carriers in QDS can also add up to the th
moelectric power factor and the figure of merit. Thus, QD
represents a good example of the ‘‘phonon-block
electron-transmitting’’ structure with a great potential f
thermoelectric applications.5,6 An analogous structure with
regimented arrays of Bi-doped PbT dots has been exam
in Ref. 7. It has been reported that the thermoelectric po
factor of the PbSeTe-based QDS structures was higher
that of high quality bulk PbTe. The thermoelectric figure
merit ZT5S2«/(k1ke) of the regimented QDS has bee
shown to be as high as 0.8 at 300 K~whereS is the Seebeck
coefficient, « is the electric conductivity,k is the phonon
thermal conductivity, andke is the electronic thermal con
ductivity!.

In this article we report the theoretical model of the i
plane thermal conductivity of QDS. Thermal conductivity
semiconductors is the sum of the phonon~lattice! k and elec-
tronic ke components. The maximum value ofZT is usually
obtained for doped semiconductors, whereke /k;1/2,8 al-
though this ratio for an unintentionally doped intrinsic SiG
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QDS is much lower. Thus, we neglect its electronic part a
limit our treatment to the phonon contribution to the therm
conductivity.

II. MODEL

In the relaxation-time approximation the lattice therm
conductivity is written as9

k5
1

3 (
i

dkngi

2 ~k!tCi
~k!Si~k!, ~1!

wherei denotes particular phonon polarization branch,ngi is
the phonon group velocity,tC is the combined relaxation
time, Si(k)dk is the contribution to the specific heat from
modes of the polarization branchi, which is the phonon
wave vector interval ofkdk. Thermal resistance and therm
conductivity arises due to phonon relaxation in differe
scattering processes which do not conserve cry
momentum.10 The scattering processes which are domin
in crystalline SixGe12x include phonon anharmonic interac
tions ~three-phonon Umklapp processes!, point defect scat-
tering ~isotopes, impurities, etc.!, and boundary scattering
They enter Eq.~1! via the combined relaxation rate

1

tC
5

1

tU
1

1

tB
1

1

tM
, ~2!

where 1/tU , 1/tB , and 1/tM are the phonon relaxation rate
in the three-phonon Umklapp, boundary, and ma
difference~impurities and isotopes! scattering processes, re
spectively.

In order to construct a theoretical formalism for QD
we include a new phonon relaxation mechanism—scatte
on quantum dots in this article. Due to the fact that the ch
acteristic feature size of a quantum dotW is smaller than the
phonon mean-free-pathL and approaching the phonon co
herency length (L;2 nm), phonon relaxation on quantum
il:
© 2000 American Institute of Physics

P license or copyright, see http://ojps.aip.org/japo/japcr.jsp



c
a

-

on
th
la

he
g

la
ri
e
um

do

a

ria
l

,
a
fe

u
gt
rg
dd
tu

q.

er-
ill
the

um

ng,

is
l
m
o-

S
d a
gle

d
n

ons
es

city
f a

ol-
at

wn
ows

697J. Appl. Phys., Vol. 88, No. 2, 15 July 2000 Khitun et al.
dots has to be considered as a separate scattering pro
Thus, we have to calculate phonon scattering rate on qu
tum dots 1/tD5vgsV /V ~wheresV is the total phonon scat
tering cross section in volumeV and vg the phonon group
velocity modified by scattering on quantum dots! and to add
it to the sum in Eq.~2!.

To describe phonon transport in QDS, we use the c
tinuum model approximation and an assumption that
thermal phonon wave can be represented by a sum of p
waves. A phonon wave outside the dot is a superposition
incident plane and scattered waves. We consider semisp
cal quantum dots of equal size randomly distributed throu
the plane. The interdot separation distances and spacer
thickness are assumed to be greater than the characte
dot size. In this case, the scattering is the incoher
process,11 and the total scattering cross section of quant
dots simply becomessV'Ns, wheres is a scattering cross
section of a single dot.

The solution of the scattering problem for a spherical
is known from acoustics and is not reproduced here.11 Using
this solution, we can write down an expression for the sc
tering cross sections of a single dot as

s5
p

k2 (
m50

`

~2m11!u11Rmu2. ~3!

HereRm is a reflection coefficient

Rm5
hm8

* ~ka!1 ibhm* ~ka!

hm8 ~ka!1 ibhm~ka!
, ~4!

where

b
9
5 i

rc

rece
F j n8~ka!

j m~kea!
G ,

r is density,c is the sound velocity, the subscripte denote
the parameter which corresponds to the dot mate
hm(ka)5 j m(ka)1 iym(ka), j andy are the spherical Besse
functions of the first and second kind, respectively, andhm* is
the complex conjugate.

Considering absolutely rigid spherical dots (bn→0),
Eq. ~3! simplifies to s;5.6(ka)4 a2 for ka!1; and s
;2pa2 for ka@1 in the long-wave and short-wave limits
respectively. It is seen now that phonon scattering on qu
tum dots is a process intermediate between the point de
and boundary scattering, with the relaxation rate 1/tD ap-
proaching the well known limits

1

tD
;

v4

nG
3 point-defect scattering ~ka!1!

and

1

tD
;nG boundary scattering ~ka@1!. ~5!

Equation~5! implies that a quantum dot acts like as a imp
rity atom if the dot size is much less than phonon wavelen
in one extreme. In the other, when the dot size is much la
than phonon wavelength, a quantum dot acts like an a
tional boundary. For our numerical study, we use the ac
Downloaded 01 Aug 2001 to 128.97.88.35. Redistribution subject to AI
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acoustic mismatch between Si and Ge (x50.78), and the
general expression for the reflection coefficient given by E
~3!.

Due to scattering on quantum dots, the phonon disp
sion and corresponding phonon group velocity in QDS w
be changed. This change can be taken into account using
following relation:12,13

k825k2S F11
2pNF~0!

Vk2 G2

2F2pNF~p!

Vk2 G2D , ~6!

where k8 is the wave number in the presence of quant
dots,k is the wave number when the dots are absent, andF is
the scattering function.

F~q!5
i

2k (
n

`

~2n11!~11Rn!Pn~cosq!, ~7!

wherePn(cosq) are Legandre polynominals, andF(0) and
F(p) correspond to the forward and backward scatteri
respectively. When the concentration of quantum dots (N/V)
is low, the influence of the backward scattering, which
proportional to the (N/V)2, can be ignored. An additiona
modification of the phonon group velocity may come fro
spatial confinement of phonon modes inside the tw
dimensional spacer and wetting layers of QDS.14

III. RESULTS OF COMPUTATIONS

Numerical calculations have been carried out for QD
with the spacer layer of 100 nm. First, we have calculate
reflection coefficient and a scattering cross section of a sin
dot were. Second, using Eq.~6!, the phonon dispersion an
modified group velocity were found. In Fig. 1 the phono
group velocity in QDS was shown as a function of theka
product. The results were shown for several volume fracti
of quantum dotsd, which were approximated by semispher
with radiusa54.0 nm~d50.05,0.1,0.2 A,B,C, respectively!.
One can see a noticeable drop in the phonon group velo
for wave vectors comparable to or less than the size o
quantum dot. The drop is particularly strong for a large v
ume fraction of dots (d50.2). One should mention here, th

FIG. 1. Phonon group velocity in the quantum dot superlattice~QDS! as a
function of theka product ~k is the phonon wave vector anda is the dot
radius!. The velocity is normalized to its bulk value. The results are sho
for several volume fractions occupied by quantum dots. The inset sh
geometry of QDS.d50.05, 0.1, 0.2 for A,B,C respectively.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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this result cannot be extrapolated for even larger fraction
quantum dots, since our formalism is based on the assu
tion that scattering from each dot is an independent proc
The latter holds only for relatively small fractions of qua
tum dots (d,0.3).

After the modified phonon group velocity has be
found, we calculated combined phonon relaxation rate@Eq.
~2!# and the lattice thermal conductivityk @Eq. ~1!#. Figure 2
shows the in-plane lattice thermal conductivity of QDS a
function of Ge dot volume fraction. Since the same volu
fraction d can be filled by dots of different sizes, we ha
calculated dependence ofk on d for different dot sizes. The
difference ink values is caused by variation of scatteri
cross sections for dots of different sizes. As the dot s
decreases, the scattering cross section attains maximu
the lower values of the phonon wave vector, so that sma
dots scatter phonons better than big ones. In the limiting c
of ka!1, the phonon relaxation on quantum dots is a

FIG. 3. In-plane lattice thermal conductivity as a function of temperature
the Si/Ge QDS ford50.05 anda54.0 nm and bulk Si. The bulk Si result i
after Balandin and Wang~Ref. 15!. The decrease is a result of the addition
phonon scattering on quantum dots.

FIG. 2. In-plane lattice thermal conductivity as a function of dot volum
fraction. For each dot volume fractiond the results are shown for severa
dots sizes~10.0, 8.0, 4.0, 2.0 nm A,B,C,D respectively!. The B curve cor-
responds to the lattice thermal conductivity of Si12dGed alloy. Note a sig-
nificant decrease of the QDS thermal conductivity as the dot radius
creases.
Downloaded 01 Aug 2001 to 128.97.88.35. Redistribution subject to AI
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proaching the regular mass-difference scattering~curve E!.
For maximizingZT, it is better not to approach this limi
since it would also significantly deteriorate electron tran
port. In Fig. 3 we present the lattice thermal conductivity
a function of temperature for Si/Ge QDS in comparison
bulk Si. The QDS results are shown ford50.05 anda
54.0 nm. It is important to note that even at this small v
ume fraction and relatively large dot radius, the decrease
the thermal conductivity of QDS is significant~;30% of its
bulk value!.15 In Fig. 4 we present the evaluation of electro
transport coefficients~electron conductivity, Seebeck coeffi
cient, and thermopower («S2) of SiGe QDS as the function
of quantum dot volume fraction obtained by the model d
veloped in Ref. 16. The transport coefficients at fixed d
volume fraction~subscribed byD! are normalized by their
value obtained in the absence of dots. As it is shown in F
4 there is a nonsignificant change in thermopower at sm
quantum dot volume fractions~dot’s radius 4.0 nm!.

IV. CONCLUSION

In conclusion, we have theoretically investigated the
plane lattice thermal conductivityk of a QDS. The devel-
oped model is applicable while phonon transport inside
quantum dot can be described in a continuum approximat
In this article we treated quantum dots as equal semisphe
In a more realistic case, the whole ensemble of quantum
may be described by a set of fractions for dots of differe
shape and size. It was found thatk of the SiGe QDS de-
creases by several times relative to thek of its constituent
materials. The decrease is caused by the scattering of ac
tic phonons on quantum dots. The strength of this eff
depends on the volume fraction occupied by quantum d
and their characteristic size. The decrease ofk remains sig-
nificant in a wide temperature range. The obtained results
important for high-temperature thermoelectric applicatio
of the quantum-dot superlattices.
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FIG. 4. Electron transport coefficients: electron conductivity~solid line!,
Seebeck coefficient~dotted line!, and thermopower«S2 ~dashed line! as the
functions of Ge dot volume fraction. All coefficients are normalized on th
value in the absence of dots. Dot size 4.0 nm,T5300 K.
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